
Load Balancing In Structured Peer to Peer Systems
Mr. Sumit A. Hirve, Dr. Suhas H. Patil,

Department of Computer Engineering, Bharati Vidyapeeth University
Pune,India

Abstract— A peer-to-peer, commonly abbreviated to P2P, is any
distributed network architecture composed of participants that
make a portion of their resources (such as processing power, disk
storage or network bandwidth) directly available to other
network participants, without the need for central coordination
instances (such as servers or stable hosts). Peers are both
suppliers and consumers of resources, in contrast to the
traditional client–server model where only servers supply, and
clients consume. Peer-to-peer was popularized by file sharing
systems like Napster During the last few years the distributed
hash table (DHT) has emerged as a flexible and general
architecture that can support a large variety of applications
including file sharing, storage systems, query processing, name
services and communication services. A DHT manages a global
identifier (ID) space that is partitioned among n nodes organized
in an overlay network. To partition the space, each node is given
a unique ID x and owns the set of IDS that are “closest” to x.
Each object is given an ID and the DHT stores an object at the
node which owns the object’s ID

Keywords— Load balance, structured peer to peer system,
distributed hash table.

I. INTRODUCTION

Structured peer-to-peer (P2P) overlay networks like
Distributed Hash Tables (DHTs) map data items to the
network based on a consistent hashing function. Such
mapping for data distribution has an inherent load balance
problem. Thus, a load balancing mechanism is an
indispensable part of a structured P2P overlay network for
high performance. The rapid development of P2P systems has
posed challenges in load balancing due to their features
characterized by large scale, heterogeneity, dynamism, and
proximity. An efficient load balancing method should flexible
and resilient enough to deal with these characteristics.
Structured P2P systems based on the DHT mechanism have
proven to be an effective design for resource sharing on a
global scale and on top of which many applications have been
designed such as file sharing, distributed file systems, real-
time streaming, and distributed processing. In these systems,
each data item is mapped to a unique identifier ID drawn from
an identifier space. The identifier space is partitioned among
the nodes so that each node is responsible for a portion of the
ID space, called zone, and storing all the objects that are
mapped into its zone.

One central challenge in the DHT design is how to balance
the load across the nodes in the system. Most P2P systems that
provide a DHT abstraction distribute objects among “peer
nodes” by choosing random identifiers for the objects. In the

case of a homogeneous system where all nodes have the same
capacity, DHTs can exhibit an O(1og n) imbalance factor.
Besides, P2P systems can be highly heterogeneous, i.e. they
may consist of peers that range from old desktops behind
modem lines to powerful servers connected to the Internet
through high-bandwidth lines. The imbalance can
significantly increase as the heterogeneity of the system
increases.

Two classes of solutions have been proposed so far to
address this challenge. Solutions in the first class use the
concept of Virtual Servers [VS]. Each physical node
instantiates with one or more virtual servers with random ID’s
that act as peers in the DHT. In the case of a homogeneous
system, maintaining O(1og n) virtual servers per physical
node reduces the load imbalance to a constant factor. To
handle heterogeneity, each node picks a number of virtual
servers proportional to its capacity. Unfortunately, virtual
servers incur a significant cost: a node with k virtual servers
must maintain k sets of overlay links. Typically k = O(log n.),
which leads to an asymptotic increase in overhead.

The second class of solutions uses just a single ID per node.
However, all such solutions must reassign IDS to maintain the
load balance as nodes arrive and depart the system. This can
result in a high overhead because it involves transferring
objects and updating overlay links. In addition, none of these
solutions handles heterogeneity directly, although they could
be combined with the virtual server technique. Also, for
development of next-generation internet infrastructure,
application layer peer-to-peer (P2P) networks are considered
to be important along with the load balancing policies. In [1],
the problem of load balancing in such P2P systems is
addressed. The space of designing load-balancing algorithms
is explored such that uses the notion of “virtual servers”. Also,
the iterative algorithmic approach for space exploration of
solution is considered to find a best reassignment of servers
for load balancing.

II. FORMALIZATION OF THE PROBLEM

According to studies in previous work on consistent hashing
in [4] and [5], it assumed that nodes were aware of most other
nodes in the system, making it impractical to scale to large
number of nodes. In contrast, each Chord node needs
“routing” information about only a few other nodes. Because
the routing table is distributed, a node resolves the hash
function by communicating with a few other nodes. In the
steady state, in an N-node system, each node maintains
information only about O(logN) other nodes, and resolves all

Sumit A Hirve et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 1022-1025

1022

lookups via O(logN) messages to other nodes. Chord
maintains its routing information as nodes join and leave the
system; with high probability each such event results in no
more than O(log2N) messages. Consistent hashing assigns
keys to nodes as follows. Identifiers are ordered in an
identifier circle modulo 2m. Key is assigned to the first node
whose identifier is equal to or follows k in the identifier space.
This node is called the successor node of key k, denoted by
successor(k). If identifiers are represented as a circle of
numbers from 0 to 2m-1 , then successor(k) is the first node
clockwise from k. Figure 2.1 shows an identifier circle with
m=3. The circle has three nodes: 0, 1, and 3. Successor of
identifier 1 is node 1, so key 1 would be located at node 1.
Similarly, key 2 would be located at node 3, and key 6 at node
0. Consistent hashing is designed to let nodes enter and leave
the network with minimal disruption. To maintain the
consistent hashing mapping when a node n joins the network,
certain keys previously assigned to n’s successor now become
assigned to n. When node n leaves the network, all of its
assigned keys are reassigned to n’s successor. No other
changes in assignment of keys to nodes need occur. In the
example above, if a node were to join with identifier 7, it
would capture the key with identifier 6 from the node with
identifier 0.

Fig. 1 An identifier circle consisting of the three nodes 0,

1,and 3.

In this example, key 1 is located at node 1, key 2 at node3,
and key 6 at node 0
THEOREM: For any set of N nodes and K keys, with high
probability:

1. Each node is responsible for at most (1+є)K/N Keys.
2. When an (N+1)st node joins or leaves the network,

responsibility for O(K/N) keys changes hands.
When consistent hashing is implemented as described, the
theorem proves a bound of є= O(logN). The consistent
hashing shows that є can be reduced to an arbitrarily small
constant by having each node run O(logN) “virtual nodes”
each with its own identifier.

Chord simplifies the design of peer-to-peer systems and
applications based on it by addressing difficult problems as
Load balance, Decentralization, Scalability, Availability,
Flexible naming. In the implementation, the Chord software
takes the form of a library to be linked with the client and
server applications that use it. The application interacts with
Chord in two main ways. First, Chord provides a lookup (key)

algorithm that yields the IP address of the node responsible for
the key. Second, the Chord software on each node notifies the
application of changes in the set of keys that the node is
responsible for. This allows the application software to, for
example, move corresponding values to their new homes
when a new node joins.

Fig. 2. Structure of an example Chord-based distributed

storage system
Figure 2 shows a possible three-layered software structure

for a cooperative mirror system. The highest layer would
provide a file like interface to users, including user-friendly
naming and authentication. This “file system” layer might
implement named directories and files, mapping operations on
them to lower-level block operations. The next layer, a “block
storage” layer, would implement the block operations. It
would take care of storage, caching, and replication of blocks.
The block storage layer would use Chord to identify the node
responsible for storing a block, and then talk to the block
storage server on that node to read or write the block.

At its heart, Chord provides fast distributed computation of
a hash function mapping keys to nodes responsible for them.
It uses consistent hashing which has several good properties.
With high probability the hash function balances load (all
nodes receive roughly the same number of keys). Also with
high probability, when an Nth node joins (or leaves) the
network, only an O(1/N) fraction of the keys are moved to a
different location, this is clearly the minimum necessary to
maintain a balanced load.

III. PROPOSED WORK

Distributed hash tables (DHTs) are a class of decentralized
distributed systems that provide a lookup service similar to a
hash table; (key, value) pairs are stored in the DHT, and any
participating node can efficiently retrieve the value associated
with a given key. Responsibility for maintaining the mapping
from keys to values is distributed among the nodes, in such a
way that a change in the set of participants causes a minimal
amount of disruption. This allows DHTs to scale to extremely
large numbers of nodes and to handle continual node arrivals,
departures, and failures.

DHTs form an infrastructure that can be used to build more
complex services, such as distributed file systems, peer-to-
peer file sharing and content distribution systems, cooperative
web caching, multicast, anycast, domain name services, and
instant messaging.

DHTs characteristically emphasize the following properties:

Sumit A Hirve et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 1022-1025

1023

 Decentralization: the nodes collectively form the
system without any central coordination.
 Scalability: the system should function efficiently

even with thousands or millions of nodes.
 Fault tolerance: the system should be reliable (in

some sense) even with nodes continuously joining, leaving,
and failing.
A key technique used to achieve these goals is that any one
node needs to coordinate with only a few other nodes in the
system – most commonly, O(log n) of the n participants – so
that only a limited amount of work needs to be done for each
change in membership. Some DHT designs seek to be secure
against malicious participants and to allow participants to
remain anonymous, though this is less common than in many
other peer-to-peer (especially file sharing systems); see
anonymous P2P. Finally, DHTs must deal with more
traditional distributed systems issues such as load balancing,
data integrity, and performance.

Fig. 3. Distributed Hash Tables

The structure of a DHT can be decomposed into several

main components. The foundation is an abstract keyspace,
such as the set of 160-bit strings. A keyspace partitioning
scheme splits ownership of this keyspace among the
participating nodes. An overlay network then connects the
nodes, allowing them to find the owner of any given key in
the keyspace. Once these components are in place, a typical
use of the DHT for storage and retrieval might proceed as
follows. The keyspace is the set of 160-bit strings. To store a
file with given filename and data in the DHT, the SHA-1 hash
of filename is generated, producing a 160-bit key k, and a
message put (k,data) is sent to any node participating in the
DHT. The message is forwarded from node to node through
the overlay network until it reaches the single node
responsible for key k as specified by the keyspace partitioning.
That node then stores the key and the data. Any other client
can then retrieve the contents of the file by again hashing
filename to produce k and asking any DHT node to find the
data associated with k with a message get(k). The message
will again be routed through the overlay to the node
responsible for k, which will reply with the stored data.

In [1] algorithm uses the concept of virtual servers. A
virtual server presents a peer in the DHT i.e., the storage of
data items and routing happen at the virtual server level rather
than at the physical node level. A physical node hosts one or

more virtual servers. Load balancing is achieved by moving
virtual servers from heavily loaded physical nodes to lightly
loaded physical nodes.

IV. PERFORMANCE EVALUATION

To evaluate the performance of the algorithm on all the

instances, it is desirable to evaluate them when only feasible
instances are considered. However, deciding if an instance
has any feasible solutions is NP-hard, as mentioned before.
There- fore, we define the following necessary conditions.
We call the instances satisfying these conditions to be
admissible instances. Clearly, instances that have feasible
solutions must be admissible but not vice versa: The total
workload should be smaller than or equal to the total
capacity.

The maximum workload of the VSs should be smaller
than or equal to the maximum capacity of the nodes, to
ensure that at least one node capable of storing the largest
VS exists.
The following are the main performance metrics used in
this paper:

 Essential challenge in Peer-to-Peer systems is to

locate data item in structured peer to peer system.
 Where the item shall be stored by the provider?

 How does a requester find the actual location of an
item?

 Also the issues of scalability that is to keeping the
complexity for communication and storage scalable,
and Robustness and resilience in case of faults and
frequent changes are to be tracked

Following figure shows management and retrieval of data

 Fig. 4. Management and Retrieval of Data
As due to centralized indexing, there was a overhead of

Sumit A Hirve et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 1022-1025

1024

communication to the state of node as depicted in Fig.
4(a).There was need of Distributed Indexing structure which
should be a intermediate scalable solution which lead to the
implementation of DHT as in Fig. 4(b).

Fig. 4(a) Need of Distributed Indexing

Fig. 4(b) Motivation to Distributed Indexing

V. CONCLUSION AND FUTURE WORK

The work have achieved the migration-based approach to

load balancing in the term of virtual server (VS), which helps
to under load the overloaded physical node by moving
portions of the load dynamically. Several objectives of this
implementation are achieved as Configuring Service/s, Load
distribution using DHT technique for Server Reassignment.
The effect of heterogeneous load on system implementation &
cross platform usage is also analyzed. This work demonstrated
the VS framework for solving the load balance problem in a
structured P2P system.

We wish that our effort will provide a backbone structure
for the further enhancements of the system. To investigate the
following important issues in the future is needed: It is
intended to explore other cost-reducing neighbourhoods to

further improve the Dual Space Local Search algorithm. As
the variance of a VS workload has a significant impact on the
success ratio performance, the plan is to investigate VS
merging and splitting strategies to enhance the performance of
the algorithms. Also to perform a more in-depth study of
issues in the dynamic scenario in which a node joins and
leaves the system.

REFERENCES

1)Chyouhwa Chen, Kun-Cheng Tsai “The Server Reassignment Problem For
Load Balancing In Structured P2P Systems “, IEEE TRANSACTIONS ON
PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 2,
FEBRUARY2008.
2) F. Dabek, M. Kaashoek, D. Karger, D. Morris, and I. Stoica, “Wide- Area
Cooperative Storage with CFS,” Proc. 18th ACM Symp. Operating Systems
Principles (SOSP ’01), pp.202-215,Oct.2007.
3) X. Wang and D. Loguinov, “Load-Balancing Performance of Consistent
Hashing: Asymptotic Analysis of Random Node Join,” IEEE/ACM Trans.
Networking, vol. 15, no. 5, Oct.2007.
4) A. Rao, K. Lakshminarayanan, S. Surana, R. Karp, and I. Stoica, “Load
Balancing in Structured P2P Systems,” Proc. Second Int’l Workshop Peer-to-
Peer Systems (IPTPS ’03), Feb.2006.
5) P.B. Godfrey and I. Stoica, “Heterogeneity and Load Balance in
Distributed Hash Tables,” Proc. IEEE INFOCOM,2005.
6) B. Godfrey, K. Lakshminarayanan, S. Surana, R. Karp, and I. Stoica,
“Load Balancing in Dynamic Structured P2P
Systems,”Proc.IEEE.INFOCOM,2006.
7) P.B. Godfrey and I. Stoica, “Heterogeneity and Load Balance in
Distributed Hash Tables,” Proc.IEEE INFO 2005.

Sumit A Hirve et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 1022-1025

1025

